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Temperature/density-dependent heavy-ion stopping /i

data are important for ion-driven WDM experiments.

Concept of the ion-driven WDM experiment planned by US-HIFS-VNL':
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However, the Bragg curve shape can change during irradiation owing to
increase of temperature,
decrease of density (if hydro expansion is not negligible).

-> Hydro calculation with temperature/density-dependent stopping data
is necessary for detailed design of the experimental conditions.

'B. G. Logan, "Progress of heavy ion fusion science towards warm dense matter physics”, Workshop on accelerator driven warm dense matter physics, Pleasanton, CA, February 22-24, 2006.



In the previous calculation, collective excitation i
of the target electrons was not taken into account.

Previous calculation (US-J WS2008) < Classical binary collision model:
The projectile is assumed to be a point charge g+
Total interaction = sum of many classical binary close collision
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The stopping calculation was performed based on
a similar way to the Ziegler’'s method?.

Brandt-Kitagawa? effective-charge theory: Wigner-Seitz
radius

Electronic stopping cross section:
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2J.F. Ziegler, J.P. Biersack and U. Littmark, The Stopping and Range of lons in Solids, Pergamon Press, ISBN 0-08-021603 (1985).
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3W. Brandt and M. Kitagawa, Phys. Rev. B 25 (1982) 5631.
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Quantum mechanical dielectric response functions  ursuig Excolnce

were used to treat arbitrary plasma degeneracies.

Temperature/density-dependent dielectric response function by Arista“:
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“N. R. Arista and W. Brandt, Phys. Rev. A 29 (1984) 1471.
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The Brandt-Kitagawa theory® was adopted
to calculate the projectile effective charge.

Screening/anti-screening effect was taken into account by assuming the
projectile charge density distribution o(r):

Projectile
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BK’s recipe: v,, must be the averaged velocity only of “valence” electrons
(not of all the electrons) = The “core” must be excluded!

3W. Brandt and M. Kitagawa, Phys. Rev. B 25 (1982) 5631.
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A Thomas-Fermi model was used to evaluate the

target electron density/velocity distribution.

Temperature-dependent ) ( 1 j 1
_ : . e I’,Ve =
Thomas-Fermi modgl. | mz2he 1 mve2/2—e¢(r)—y
ed(r) = electrostatic potential Phase-space +exp KT
u = chemical potential distribution

- No shell structure, no distinction between the core- and valence electrons

The TF target atom was separated into the core
and valence parts using Cappeluti’'s method?>:

Total energy stored in a sphere with a radius r:
W(r) = [ (Wign (1) + W (') + W (') Jar 2 dr,
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5E. Cappelluti and L. Delle Site, Physica A 303 (2001) 481.



The target electron density distribution changes
with the temperature and pressure.
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Temperature/density-dependence of n (r) in an ;Al target atom:

Densit Temp. Prle:)ss. loniz. (F:(I)isma
kT (eV) (Mbar) deg. 77 conz’;. r
0.025 12 42% 925
IPsolc 25 38| 44%| 094
1040 0.025 | 2.8x10°8 1.1% 8.72
25 | 1.8x1073 58% 0.033

Comparison with a HF calculation:
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The accuracy for the cold solid target became a bit
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worse than before, although the model was improved.

Result of calculation; compar
11Na projectile, ,5;Al target

iIson with other data:

Total stopping S = Electronic stopping S, + Nuclear stopping® S, (S,, << S,)
Asymptotic behaviors (E < ~ 30 keV/u, = 5 MeV/u < E) are excellent.
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SW. D. Wilson et al., Phys. Rev. B 15 (1977) 2458.
#L. C. Northcliffe and R. F. Schilling, Nucl. Data Tables A7 (1970) 233.
8J. F. Ziegler, “Computer Code SRIM-2008", URL: http://www.srim.org/.
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The projectile stopping power increases with increasing /7o

temperature and decreasing density of the target.

Temperature/density-dependence of the stopping cross-section for ,;Al:
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The target thickness and projectile energy were //f/

designed based on the data for cold solid Al target.

An example for demonstration of the temperature/density effect:

Projectile: 30.6-MeV %3Na* (1.33 MeV/u), 30 GW/mm? (peak) X 1 ns (FWHM)
- Energy per pulse W = 30 J/mm? (1.7x10'3 ions/mm?2)
(Not achievable even by the future VNL IB-HEDPX):

Tqrget: 13Al-slab, Target (Solid) | Foam | Foam
thickness = 2.3 mg/cm? Density (p/ puyg) | (1.00) | 0.1 | 0.01
—dE/d(px)-inhomogeneity = + 5%, Thickness (um) | (8.36) | 83.6 | 836

if the cold solid Al data are used.

P(t)=P,... sinz[g—tj
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Hydro motion of the target was analyzed using

a 1D code being coupled with the stopping data.

Original hydro code summary:

“MULTI (MULTIgroup radiation transport in MULTllayer foils)”’, version 7
by Rafael Ramis (MPQ, Garching)

1D radiation hydrodynamics

Fully implicit Lagrangian scheme

Time-splitting algorithm

Tabulated EOS data (SESAME table)
Modifications made by this work:

Laser deposition routine was canceled.

Original ion beam deposition routine (constant dE/dx!) was modified
to use a dE/dx (E,p,KT) table prepared by the present methods.

Heat conductivity: Classical heat flux by Spitzer
- SESAME table

7R. Ramis, R. Schmalz and J. Mayer-ter-Vehn, Computer Physics Communications 49 (1988) 475.
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The target hydro motion can be affected by the
temperature/density dependence of the stopping.

Temporal evolution of kKT and Hydro motion after irradiation
—dE/pdx during irradiation (t < 2 ns): (t>2 ns):
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If the peak power is reduced to < 10 GW/mm?, [ Pesingesstesc

the heating homogeneity can be improved.

Beam power dependence (t = 2 ns): cf. Previous results:
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Conclusions: The projectile stopping calculation was P

iImproved and successfully embedded in the hydro code.

Projectile stopping calculation using the quantum dielectric response theory:

Temperature/density dependence of the stopping showed a similar tendency to
the previous calculations based on the classical binary collision model.

The temperature/density effects became less significant
than those by the previous calculations.

Hydro calculation regarding the Bragg-peak-based US-WDM experiment:

Consideration on the temperature/density effect might not be necessary,
if the ,,Na-beam power is less than ~ 10 GW/mm? (or KT < 10 eV).
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