

Warm Dense Matter Experiments and Diagnostics by using Pulsed-power Devices and Intense Ion Beams

<u>Toru Sasaki</u>, Takashi Kikuchi, Weihua Jiang¹⁾, and Nob. Harada Department of Electrical Engineering, Nagaoka University of Technology ¹⁾Extreme Energy–Density Research Insutitute , Nagaoka University of Technology

Outline

Fintroduction to Warm Dense Matter Exp.

Generation and Evaluation for High Energy Density Matter based on Pulsed-power and Intense Charged Particle Beams

- Pulsed-power Device
- Intense Ion Beams
- X-ray Diagnostic Source

Warm Dense State

Features of Warm Dense State

> High Density($10^{-3}\rho_s \rho_s$) and Low Temperature($0.1^{-10}eV$)

> Electrons are in partially degenerate regime

Evaluate Physical Parameter in Warm Dense State

> How to diagnose the target state?

Optically thick Homogeneity Making well-defined state i.e. quasi-uniform, coaxial symmetric, etc.

> Achievable parameter region of warm dense matter?

Depending pulsed-Compared to the expansionpower devicestime and pulse duration.

Complementary approach for warm dense matter study using pulsed-power devices and intense ion beams

Experimental setup for evaluating foam/plasma

Typical evolutions of dense foam/plasma using isochoric-pulsed discharges

Dense foam/plasma temperature achieves about 4000K estimated by SESAME(Cu:3333)

Foam/plasma temperature is estimated by SESAME EOS assuming homogenous condition.

Typical Spectrum (@0.032 ρ_s) of Copper Foam/plasma

Typical Spectrum (@0.17 ρ_s) of Copper Foam/plasmas

<u>Comparison of Foam/plasma Temperature estimated by</u> <u>the Line Pair Method or SESAME</u>

Input Energy \downarrow $E = \int V_{Foam} \cdot Idt$

Foam/Plasma Temperature ↓

Line Pair Method using CuI spectrum at 477nm and 610 nm

 $\ln\left(\frac{\varepsilon_{21}\lambda_{21}}{A_{21}g_2}\right) = \frac{E_2}{k_B T} + \ln K$

or

SESAME Equation of State Table[2]

[2]S.P.Lyon, J.D.Johnson, T-1 Handbook of the SESAME Equation of State Library

Plasma temperature is estimated to be about 5000K

⇒ WDM state can be generated

Typical Evolution of Foam/plasma Temperature and Electrical Conductivity (@0.032ps) $(t) = \frac{l}{\pi r^2} \frac{I(t)}{V_{Foam}(t)}$

The electrical conductivity of foam/plasma is estimated to be 10^{4} ~ 10^{5} S/m.

Comparison of Electrical Conductivity

The results indicate that the electrical conductivity by using isochoric heating method is comparable to the previous experiments.

We will evaluate the temperature dependence of electrical conductivity.

Gold foam/plasma is also evaluated

The results indicate that the electrical conductivity by using isochoric heating method is comparable to the previous experiments.

Remarks on KEK DA's study

<u>Evaluate Physical Parameters of Matters</u> <u>in High Energy Density State based on Intense</u> <u>Charged-particle Beams</u>

For DA and Beamline

For HED Target

> Achievable beam parameter from KEK DA to HEDP experiment section?

- Provable Beam Number
- Extending Accelerator with beam controlling technique (accumulation, cooling, bunching)

 Achievable parameter region of matters in HED state?
 How to make quasi-uniform

target?

> What are research opportunities?

Exploration of the origin of the solar system from the internal structure of the giant planets

> To evaluate the interior of giant planet as the Jupiter, we make the same condition $(P^200GPa, T^6000K)^*$

*D. Saumon, et. al., Astrophys. J., 609, 1170(2004)

> Energy Density

- > Achievable Density
- > Entropy Condition

If we use the shock compression,

$$S_1 - S_0 = C_v \ln\left(\frac{p_1 \rho_0^{\gamma}}{p_0 \rho_1^{\gamma}}\right) = C_v \left\{ (\gamma - 1) \ln\left(\frac{p_0}{p_1}\right) + \gamma \ln\left(\frac{T_1}{T_0}\right) \right\} > 0.$$

Strongly depend the initial target condition

Merits of DAC with intense ion beam

- > Direct heating by Bragg peak -> efficient heating
- > Well-known deposition profile at diamond anvil
- > Low costs, and simple structure

Demerits of DAC with intense ion beam

> Small sample size

Possible parameter region based on DAC

WDM experiment with NDCX-II (sandwiched target)

Any Material from sub μm to a few μm in thickness (depend on the material density)

NDCX-II ~3MeV ~30A, ~1ns Li+ Ion Beam

Beryllium 1µm thickness

Feature of the target

- -Tamped observation material by Beryllium.
- -Transparent for X-ray Regime.
- => Directly observe the hydrodynamic motion of any material.

=> EOS comparative study both Ex. and Sim. results.

Weak Point

-Transport properties as an electrical conductivity is difficult to evaluate. -How mach is the possible thickness of Be?(vapor deposition?) (5 μ m in thickness of Be is produced, industrially.)

Preliminary results for sandwiched target(@0.1ns)

Requirement parameters for X-ray sources

Estimation of required pulse generator

$$\frac{1}{2}\Delta mv^2 = \frac{3}{2}nkT\Delta V$$

$$\bigvee v = \sqrt{\frac{3\left(1 + Z_{eff}\right)kT}{Am_p}}$$

T=2keV and Fully ionized aluminum: v ~ 10⁶ m/s

$$W = \frac{d}{dt} \left(\frac{1}{2} LI^2 + RI^2 \right) = \frac{d}{dt} \left(\frac{1}{2} mv^2 \right)$$
$$\frac{1}{2} \dot{L}I^2 + LI\dot{I} = mv\dot{v}$$

I=100kA, r=1um, L~100nH, and dv/dt~10¹⁸m/s²

Magnetic pulse-compression system N. Ohshima et., al, IEEJ FM Vol. 125 (2005) pp.25-29

Pulse Forming Network (PFN) Modules

> Lowering output impedance, PFN modules are parallel configuration.

Demonstrating PFN system

Stored Voltage: 20kV Load: Copper wire (φ=20μm, I=2mm) Circuit Inductance: 100nH

Demonstrating PFN system

Current rising rate is estimated to be 1.8×10^{11} A/s. ⇒Current rising rate can be increased PFN voltage.

Typical Emission Spectrum and Temperature

Radiation temperature estimated to be 6.9eV.

Concluding Remarks

> WDM experiment by using pulsed-power devices with isochoric heating is demonstrated. The results indicate that the observed electrical conductivity is comparative to the previous experiments.

> WDM experiment by using intense ion beam target is calculated. The target structure of intense ion beam have a potential as flexible geometry, and huge approach of scientific abundances.

> Point spot X-ray generator is demonstrated for single wire explosion. The current rising time is estimated to be order of 10^{11} A/s.